What was the first “gestural interface”?

Theremin
Myron Krueger
Myron Krueger

There were things I resented about computers. I resented that I had to sit down to use them. ... that it was denying that I had a body. ... that it wasn't perceptual — it was all symbolic. I started thinking that artists and musicians had the best relationships to their tools. As early as '74, the computer could see you.

Krueger 1988

P2: Shadow Boxing

“Experience a computer; don’t learn to use it”

Draw inspiration from prior work:

- Manipulate physical environment to enhance experience or sensing (bright lights, audio, ...).
- Manipulate virtual environment (add virtual objects).
- Explore potentially ambiguous input/output relationships - without “deep” recognition. For example: optical flow, regions of activity, etc.
- Add sensor channels: depth camera, microphone, ...

TOPICS

“Natural” User Interfaces
Deixis & Proxemics
Gesture Input Technology
Gesture Design

“Natural” User Interfaces
What makes an input method “natural”?

The top 8 images for “natural interaction” (vs. the top 8 images for “natural”)
This is an **ill-posed question**!

A reasonable working definition?

A user interface is “natural” if:

The experience of using a system matches expectations, such that it is always clear to the user how to proceed, and that few steps (with a minimum of physical and cognitive effort) are required to complete common tasks.

Hinckley & Wigdor

Wait… isn’t this just **usability** by another name?

It is a **common mistake** to attribute the naturalness of a product to the **underlying input technology**. A touch screen, or any other input method for that matter, is not inherently natural.

Hinckley & Wigdor

“Fluent” experiences depend on the **context and expectations** of the user, often relying on prior **learning** and **skill acquisition**.

What do we “do” with gestures and body posture?
Deixis: referencing the world

We continuously reference elements in the world in ambiguous ways, yet for the most part we seem to convey our intentions quite well.

Deixis: Reference by means of an expression whose interpretation is relative to the (usually) extralinguistic context.

Common methods of physical reference: pointing & placing [Clark 2003]
Reference by Pointing

Reference by Orientation and Eye Gaze

Reference by Placement

“Put That There”
Proxemics
Proxemics

Proxemics is the study of measurable distances between people as they interact. [Hall 1966]

Taxonomy of Distance:
- **Intimate:** embracing, touching or whispering
- **Personal:** interaction among friends / family
- **Social:** interactions among acquaintances
- **Public:** distance used for public speaking

Incorporating Deixis & Proxemics
Gesture Input Technologies

Depth Cameras
Structured IR light
- cheap, fast, accurate
- missing pixels, shadows

How Kinect Works
Structured Light 3D Scanner
RGB vs. Depth for Pose Estimation

RGB
- ✗ Only works when well lit
- ✗ Background clutter
- ✗ Scale unknown
- ✗ Clothing, skin colour

Depth
- ✓ Works in low light
- ✓ Person ‘pops’ out from bg
- ✓ Scale known
- ✓ Uniform texture
- ✗ Shadows, missing pixels

Much easier with depth!

Human Pose Estimation

Kinect tracks 20 body joints in real time.

Skeletal Tracking

Kinect SDK

Input
Image Data Streams: RGB, Depth images
Skeletal Tracking
Audio (Microsoft Speech Platform)

Constraints
- Latency: data analysis introduces lag
- 86cm to 4m range
- Not outdoors (too much IR noise)
- Not too close to other Kinects (IR interference)
- Track 1-2 people only; full bodies must be in view (?)
Designing Gestural UIs

A designer must consider:
(a) the physical sensor

Input Device Properties

Property Sensed: position, force, angle, joints
States Sensed: contact, hover, ...
Precision: accuracy of selection
Latency: delay in property/state sensing
Acquisition Time: get pen, move hand to mouse
False Input: accidental touches
Of “clutches” and “live mics”

<table>
<thead>
<tr>
<th>Device</th>
<th>Property</th>
<th>State Tracked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>2D Position</td>
<td>Hover, Button-Press</td>
</tr>
<tr>
<td>Stylus</td>
<td>2D Position</td>
<td>Hover, Contact</td>
</tr>
<tr>
<td>Touch</td>
<td>2D Position</td>
<td>Contact</td>
</tr>
<tr>
<td>Gesture</td>
<td>2D/3D Position</td>
<td>??</td>
</tr>
</tbody>
</table>

In-air gestures may involve a **live mic**, increasing chances of **false positives** and **false negatives**.

Clutch: differentiate actions intended to drive the computing system from those that are not.

Managing a “live mic”

Reserved Actions
Design gestures that will not be triggered unless specifically desired by the user.

Reserved Clutches
Use a special gesture to indicate that the system should now monitor for input commands.

Multi-Modal Input
Use another modality such as buttons or voice input to engage tracking by the system.

Designing Gestural UIs

A designer must consider:

(a) the physical **sensor**
(b) the **feedback** presented to the user
(c) **ergonomic** and industrial design
(d) the **interplay** between all interaction techniques and among all devices in the surrounding context
(e) the **learning curve**

Gesture Design Exercise
How to design gestures?

Observation: generate potential gestures by observing (and participating in) situated activity.

Participatory design: have representative users generate potential gestures for you.

One methodology [Wobbrock et al 2009]:
1. Show participant start and end states of UI
2. Participant performs gesture for that effect
3. Analyze collected gestures from population

Must still consider **interplay** with task/context!

Design Exercise

Context: *virtual post-its* - the primary interface elements are movable, resizable squares.

Your task: design a consistent touch gesture vocabulary for a set of operations.

You may assume that:
(a) Users can use both of their hands.
(b) The system identifies the hands/fingers being used.
(c) You may introduce additional widgets or graphical elements as part of your vocabulary.

Design Exercise

Overview:
- 5 min Individually develop your own gestures
- 15 min Share with table, revise as a group
- 15 min Share with class

Consider:
- Learnability
- Mechanics of repeated use
- Consistency / compatibility across operations
Final Thoughts

Leverage the unique opportunities provided by a particular input technology. Don’t “shoehorn” new modalities where old techniques excel.

Consider “perceptual” vs. “symbolic” input.

Prevent accidental (vs. intentional) input via unambiguous design and/or clutching.

Respect existing conventions of spatial reference and social use of space.